

Mouse Jiggler Offense & Defense

Dr. Phil
@ppolstra

Why this talk?

● Mouse jigglers now standard for LEOs

● Full disk encryption is worthless if logged in

● Building your own jiggler can be fun

What is a mouse jiggler?

● Used to keep computer awake & unlocked

● Can be used as a prank

● Types

– Software

● Not what this talk is about

– Hardware

● The one to be worried about

Detecting a Mouse Jiggler

● Known VID/PID (0x0E90)/(0x0028 or 0x0045)

● Behavior

● USB device class

Detection via known VID/PID

● Single manufacturer of jigglers used today

● Detection is:

– Quick

– Easy

– Definite

Introduction to udev rules

● Determine what happens when new devices
attached

● Set of matching conditions

● Any scripts launched must be short

Udev rules for known VID/PID

Contents of /etc/udev/rules.d/10-jiggler.rules

ACTION=="add", ATTRS{idVendor}=="0e90",
RUN+="/etc/udev/scripts/lockscreen.sh"

Don't forget to run sudo service udev restart!

Detection based on behavior

● Jigglers make periodic small mouse movements

– Prank version=machine unusable (short period)

– Forensic version has much longer period

● Periodic mouse commands can be detected

– No clicks, only movement (normally in 1 axis only)

– Normally a 2-button mouse

● Benign defenses should be applied immediately

– Takes a few minutes for this detection

Udev rules for behavior detection

Contents of /etc/udev/rules.d/10-jiggler2.rules

ACTION=="add", RUN+="/etc/udev/scripts/jiggler-
detect.sh ${BUSNUM} ${DEVNUM}&"

Don't forget to run sudo service udev restart!

Detection script for behavior

● Use usbhid-dump to dump HID reports

● Must be run with root privileges

● Relies on no-click behavior (among other
things)

Jiggler-detect.sh

#!/bin/bash

Mouse jiggler detector

Usage: jigggler-detect.sh <USB bus> <USB
device address>

#

Created by Dr. Phil Polstra for DEFCON 24

usage () {

 echo "Usage: $0 <USB bus> <USB device
address>"

 echo "This script will attempt to detect a mouse"

 echo "jiggler based on behavior."

 exit 1

}

if [$# -lt 2]; then

 usage

fi

mouse jigglers are normally 2-button mice

w/3-byte reports

use usbhid-dump to intercept reports and

check for 3 bytes

and no mouse clicks in two minutes

first check for the small report

deviceAddress=$(printf "%03d:%03d" $1 $2)

shortReport=$(timeout 1s usbhid-dump -a
$deviceAddress -es \

 | egrep "^ 00 00 00$")

Jiggler-detect.sh (contd)
if [! -z "$shortReport"]; then

 echo "Found a possible mouse jiggler!"

 # collect reports for 2 minutes

 declare -a mouseReports; declare -a notNullReports

 mouseReports=($(timeout 2m usbhid-dump -a $deviceAddress -es \

 | egrep -v "^$deviceAddress" | egrep -v "^Terminated"))

 # now check for clicks and small movement

 count=0; notNullCount=0

 while ["x${mouseReports[count]}" != "x"]

 do

 # if there was a single mouse click it is not a jiggler

 if ["x${mouseReports[count]}" != "x00"]; then

 echo "Not a jiggler after all" ; exit 0

 fi

 if ["${mouseReports[count+1]}" != "00"] || \

 ["${mouseReports[count+2]}" != "00"]; then

 notNullReports[notNullCount]="${mouseReports[count]}:"

 notNullReports[notNullCount]+="${mouseReports[count+1]}:"

 notNullReports[notNullCount]+="${mouseReports[count+2]}"

 echo ${notNullReports[notNullCount]}

 notNullCount=$(($notNullCount + 1))

 fi

 count=$(($count + 3))

 done

 echo "Found $notNullCount non-null mouse
reports"

 # create a unique array

 declare -a uniqueReports

 uniqueReports=$(echo "${notNullReports[@]}" | \

 tr ' ' '\n' | sort -u | tr '\n' ' ')

 echo ${uniqueReports[@]}

 # if any of these are exactly the same this is a
jiggler

 if [${#uniqueReports[@]} -ne $notNullCount];
then

 echo "We have a jiggler!"

 exit 2

 fi

Jiggler-detect.sh (contd)

else

 # check for the fancier MJ-3 which has

 # a 5-button 3-axis mouse and not a lot of noise

 shortReport=$(timeout 1m \

 usbhid-dump -a $deviceAddress -es \

 | egrep "^ 00 ([0-9A-F]{2}){2}[0-9A-F]{2}$")

 if [! -z "$shortReport"]; then

 echo "Found possible MJ-3"

 declare -a mouseReports

 # we need to collect reports a bit longer since

 # this one is not as chatty

 mouseReports=($(timeout 4m \

 usbhid-dump -a $deviceAddress -es \

 | egrep -v "^$deviceAddress" | \

 egrep -v "^Terminated"))

 count=0

while ["x${mouseReports[count]}" != "x"]

 do

 # if there was a single mouse click it is not a jiggler

 if ["x${mouseReports[count]}" != "x00"]; then

 echo "Not a jiggler after all"

 exit 0

 fi

 count=$(($count + 4))

 done

 # if we made it this far this is definitely a jiggler

 echo "Fancy mouse jiggler found"

 else

 echo "No mouse jigglers here"

 exit 0

 fi

fi

Detection based on device class

● Fires whenever possible jiggler inserted

● Should be benign

● Good idea even if other rules in place

Udev rules for USB class

Contents of /etc/udev/rules.d/10-jiggler3.rules

ACTION=="add", SUBSYSTEM==”hid",
RUN+="/etc/udev/scripts/lockscreen.sh"

Don't forget to run sudo service udev restart!

Defensive scripts

● Choose level of paranoia

– Just lock screen

– Encrypt some files

– Start a secure wipe

– Physical destruction

Locking screen from a script

● Gnome

– Get session ID from /bin/loginctl list-sessions

– /bin/loginctl lock-session <sessionID>

● KDE & LXDE

– /bin/su <user> -c “DISPLAY=:0
/usr/bin/xscreensaver-command -activate”

● Others: su <user> -c “DISPLAY=:0 <screenlock
command>

/etc/udev/scripts/lockscreen.sh

!/bin/bash

user='phil' # your user here

for Gnome

sessionid=`/bin/loginctl list-sessions | grep ${user} | awk '{print $1}'`

/bin/loginctl lock-session ${sessionid}

for KDE and LXDE

#/bin/su ${user} -c "DISPLAY=:0 xscreensaver-command -activate"

#other systems generally

/bin/su ${user} -c "DISPLAY=:0 <screensaver command> -activate"

Encrypting sensitve files

● GPG

● OpenSSL

● Bcrypt and ccrypt

● Random encryption keys

– Generating

– (somewhat) securely storing

GPG script
#!/bin/bash

usage () {

 echo "Usage: $0 <directory to encrypt>"

 exit 1

}

if [$# -lt 1]; then

 usage

fi

for filename in $1/*

do

 # don't encrypt twice

 basefile=$(basename $filename)

 extension="${basefile##*.}"

 if ["$extension" != "gpg"]; then

 echo "password" | \

 gpg --passphrase-fd 0 --symmetric \

 $filename && rm -f $filename

 fi

done

OpenSSL script
#!/bin/bash

usage () {

 echo "Usage: $0 <directory to encrypt>"

 exit 1

}

if [$# -lt 1]; then

 usage

fi

for filename in $1/*

do

 # don't encrypt twice

 basefile=$(basename $filename)

 extension="${basefile##*.}"

 if ["$extension" != "enc"]; then

 openssl aes-256-cbc -a -salt \

 -k password \

 -in $filename -out ${filename}.enc && rm -f $filename

 fi

done

Ccrypt script

● Ccrypt:

JIGGLY=”password” ccencrypt -E JIGGLY
<filename>

Random encryption script

● Generate a random password using something like:

dd if=/dev/urandom bs=1 count=128 | base64

● Save to:

– Middle of a log file

– Some random file

– Random sector (including unallocated)

– Slack space

● Securely delete file when done!

Random Encryption Example

#!/bin/bash

usage () {

 echo "Usage: $0 <directory to encrypt>"

 exit 1

}

if [$# -lt 1]; then

 usage

fi

get a random password

randPass=$(dd if=/dev/urandom bs=1
count=128 | base64)

how many files were encrypted?

enced=0

for filename in $1/*

do

 # don't encrypt twice

 basefile=$(basename $filename)

 extension="${basefile##*.}"

 if ["$extension" != "gpg"]; then

 enced=$(($enced + 1))

 `echo $randPass | \

 gpg --passphrase-fd 0 --symmetric \

 $filename && srm -z $filename`&

 fi

done

if [$enced -gt "0"]; then

 echo "DKMS install key:$randPass" >>/var/log/vbox-
install.log

fi

srm -z $0

Deleting sensitive files

● Secure-delete

– srm

– sfill

– sswap

Srm options

● -d ignore the dot files “.” and “..”

● -f fast, don't use /dev/urandom (don't use!)

● -l lessen security (don't use!)

● -r recursively delete subdirectories (yes
please!)

● -v verbose (um... you are running a script)

● -z zeros on last write (they'll think its empty?)

Delete script
#!/bin/bash

usage () {

 echo "Usage: $0 <directory to burn>"

 exit 1

}

if [$# -lt 1]; then

 usage

fi

kill anything in the swap

sswap -zf /dev/sda7 &

burn the files

for filename in $1/*

do

 srm -zfr $1

done

destroy the directory

sfill $1

hit swap again

sswap -z /dev/sda7

shut it down!

halt

Wiping the whole disk

● Can get data from

– /dev/zero

– /dev/random

– /dev/urandom

● Might take a while

– Encrypt or delete important items first

Disk wipe script

● Helps to have more than one partition!

● Unmount partition

● Delete that data

– Quickest: dd if=/dev/zero of=/dev/sdX bs=1M

– Better: dd if=/dev/urandom of=/dev/sdX bs=1M

– Best: shred -fz /dev/sdX

Physical destruction

● Charged capacitors

● Pyrotechnics

● Destructive edges

● Past DEFCON talks

– DC19 – That's how I lost my eye

– DC23 – That's how I lost my other eye

Making your own jiggler

● Using FTDI VNC2

● Coding

● Making it harder to detect

● Adding random keystrokes for max annoyance

Intro to FTDI VNC2

● Microcontroller (think Arduino)

● Supports 2 USB devices/hosts

Coding jiggler

● Creating USB HID device

● Sending commands

Creating a USB HID

This code is shameless taken from John Hyde's
USB Design by Example

BYTE MouseReportDescriptor[] = {

 5, 1, // Usage_Page (Generic Desktop)

 9, 2, // Usage (Mouse)

 0xA1, 1, // Collection (Application)

 9, 1, // Usage(Pointer)

 0xA1, 0, // Collection (Physical)

 5, 9, // Usage page (Buttons)

 0x19, 1, // Usage_Minimum (1)

 0x29, 2, // Usage_Maximum (2)

 0x15, 0, // Logical_Minimum (0)

 0x25, 1, // Logical_Maximum (1)

 0x75, 1, // Report_Size (1)

 0x95, 2, // Report_Count (2)

0x81, 2, // Input (Data,Var,Abs) = 2 buttons

 0x95, 6, // Report_Count (6)

 0x81, 1, // Input (Constant) = Pad to byte

 5, 1, // Usage page (Generic desktop)

 9, 0x30, // Usage(X)

 9, 0x31, // Usage(Y)

 0x15, 0x81, // Logical_Minimum (-127)

 0x25, 0x7F, // Logical_Maximum (127)

 0x75, 8, // Report_Size (8)

 0x95, 2, // Report_Count (2)

 0x81, 6, // Input (Data,Variable,Relative) = X and Y

 0xC0, // End_Collection

 0xC0 // End_Collection

 };

Sending mouse commands

● The mouse sends HID reports to the host

● The format for this report is in the HID
descriptor from the previous slide

● Simplest report is 3 bytes long

– 1st byte contains up to 8 buttons

– 2nd & 3rd bytes contain X & Y mouse coordinates
(-128, 127)

● Other axis and button combinations possible

Making your jiggler hard to detect

● Faking VID/PID (not standard or FTDI's VID)

● Randomizing inputs (not just the same few
values repeated)

● Randomizing time interval (as long as they are
all < 1 minute this should work)

Adding optional random keystrokes

● Create a USB HID keyboard

● Sending the random keys

Create a USB HID keyboard
BYTE KeyboardReportDescriptor[] = {

 5, 1, // Usage_Page (Generic Desktop)

 9, 6, // Usage (Keyboard)

 0xA1, 1, // Collection (Application)

// First declare the key usage input report

 5, 7, // Usage page (KeyBoard)

 0x19, 0xE0, //Usage_Minimum (Keyboard - Left Control)

 0x29, 0xE7, // Usage_Maximum (Keyboard - Right GUI)

 0x15, 0, // Logical_Minimum (0)

 0x25, 1, // Logical_Maximum (1)

 0x75, 1, // Report_Size (1)

 0x95, 8, // Report_Count (8)

 0x81, 2, // Input (Data,Var,Abs) = Modifier Byte

 0x81, 1, // Input (Constant) = Reserved Byte

 0x19, 0, // Usage_Minimum (Keyboard - 0)

 0x29, 82, // Usage_Maximum (Keyboard - UpArrow)

0x15, 0, // Logical_Minimum (0)

 0x25, 82, // Logical_Maximum (82)

 0x75, 8, // Report_Size (8)

 0x95, 6, // Report_Count (KeycodesMax)

 0x81, 0, // Input (Data,Array) = Key Usage Bytes

// Now the LED output report

 5, 8, // Usage Page (LEDs)

 0x19, 1, // Usage_Minimum (LED - Num Lock)

 0x29, 5, // Usage_Maximum (LED - Kana)

 0x15, 0, // Logical_Minimum (0)

 0x25, 1, // Logical_Maximum (1)

 0x75, 1, // Report_Size (1)

 0x95, 5, // Report_Count (5)

 0x91, 2, // Output (Data,Var,Abs) = LEDs (5 bits)

 0x95, 3, // Report_Count (3)

 0x91, 1, // Output (Constant) = Pad (3 bits)

 0xC0 // End_Collection

 };

This code is shameless taken from John Hyde's
USB Design by Example

Sending random keystrokes

● Keyboards use keycodes, not ASCII codes

● Multiple keys can be pressed simultaneously

● Since we want to send random keys we really
don't care what values are sent!

● More details on this in my DC23 talk “One
Device to Pwn Them All”

Other ideas

● Converting this annoying device into a key
logger is pretty simple

● Functionality of homemade jiggler could be
combined with the scriptable USB HID
keyboard described in my DC23 “One Device to
Pwn Them All” talk

Questions?

● @ppolstra

● I'm the handsome guy that is often wearing a
deerstalker (Sherlock Holmes) hat

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

